上海自仪四厂激发光源理论
2016/9/18 8:59:00
激发光源是原子发射光谱仪中一个极为重要的组成部分,它的作用是给分析试样提供蒸发、原子化或激发的能量。在光谱分析时,试样的蒸发、原子化和激发之间没有明显的界限,这些过程几乎是同时进行的,而这一系列过程均直接影响谱线的发射以及光谱线的强度。
??
??试样中组份元素的蒸发、离解、激发、电离、谱线的发射及光谱线强度除了与试样成份的熔点、沸点、原子量、化学反应、化合物的离解能、元素的电离能、激发能、原子(离子)的能级等物理和化学性质有关以外,还跟所使用的光源特性密切相关,不同的激发光源对各类样品、各种元素具有不同的蒸发行为和激发能量,因此要根据不同的分析对象,选择具有相应特性的激发光源。
??
??由于样品的种类繁多、形状各异、元素对象、浓度、蒸发及激发难易不同,对光源的要求也不同。没有一种光源能同时满足各种分析对象的要求。各类光源在蒸发温度、激发温度、放电稳定性等各方面都各有其特点和应用范围。
??
??原子发射光谱分析的误差,主要来源是光源,因此在选择光源是应尽量满足以下要求:
??
??1)高灵敏度,随着样品中浓度微小变化,其检出的信号有较大的变化;
??
??2)低检出限,能对微量和痕量成份进行检测;
??
??3)良好的稳定性,试样能稳定地蒸发、原子化和激发,分析结果具有较高的精密度;
??
??4)谱线强度与背景强度之比大(信噪比大);
??
??5)分析速度快;
??
??6)结构简单,容易操作,安全;
??
??7)自吸收效应小,校准曲线的线性范围宽。
??
??原子发射光谱仪的类型,目前常用的光源有以下两种:一类是经典光源(电弧及火花),另一类是等离子体及辉光放电光源,其中以电感耦合等离子体光源(ICP)居多,在不同的领域中得到广泛的应用。
??
??2.1电感耦合等离子体光源(ICP)
??
??等离子体(Plasma)一词首先由Langmuir在1929年提出,目前一般指电离度超过0.1%被电离了的气体,这种气体不仅含有中性原子和分子,而且含有大量的电子和离子,且电子和正离子的浓度处于平衡状态,从整体来看是处于中性的。从广义上讲像火焰和电弧的高温部分、火花放电、太阳和恒星表面的电离层等都是等离子体。
??
??等离子体可以按温度分为高温等离子体和低温等离子体两大类。当温度高达106-108K时,所有气体的原子和分子完全离解和电离,称为高温等离子体;当温度低于105K时,气体部分电离,称为低温等离子体。
??
??在实际应用中又把低温等离子体分为热等离子体和冷等离子体。当气体压力在1.013X105帕(相当1大气压)左右,粒子密度较大,电子浓度高,平均自由程小,电子和重粒子之间碰撞频繁,电子从电场获得动能很快传递给重粒子,这样各种粒子(电子、正离子、原子、分子)的热运动能趋于相近,整个气体接近或达到热力学平衡状态,此时气体温度和电子温度基本相等,温度约为数千度到数万度,这种等离子体称为热等离子体。例如直流等离子体喷焰(DCP)和电感耦合等离子体炬(ICP)等都是热等离子体,如果放电气体压力较底,电子浓度较小,则电子和重粒子碰撞机会就少,电子从电场获得的动能不易与重粒子产生交换,它们之间动能相差较大电子平均动能可达几十电子伏,而气体温度较低,这样的等离子体处于非热力学平衡体系,叫做冷等离子体,例如格里姆辉光放电、空心阴极灯放电等。
??
??在光谱分析中所谓的等离子体光源,通常指外观上类似火焰的一类放电光源。目前常用的有三类:即电感耦合等离子体炬(ICP)、直流等离子体喷焰(DCP)和微波感生等离子体炬(MIP)。对于MIP来说,虽然允许微量进样,耗气量小,功率低、易测定非金属,但对多数金属检测限差、元素间干扰严重、需要氦气,因此主要用于色谱分析的检测器。
??
??ICP和DCP这两类等离子体光源具有较好的分析性能,均已应用于原子发射光谱仪。
??
??电感耦合等离子体原子发射光谱(ICP-AES)技术的先驱是Greenfiald和Fasel,他们在1964年分别发表了各自的研究成果。七十年代后该技术取得了真正的进展,1974年美国的ThermoJarrell-Ash公司研制出了台商用电感耦合等离子体原子发射光谱仪。
??
??ICP光源主要优点是:
??
??1)检出限低:许多元素可达到1ug/L的检出限
??
??2)测量的动态范围宽:5-6个数量级
??
??3)准确度好
??
??4)基体效应小:ICP是一种具有6000-7000K的高温激发光源,样品又经过化学处理,分析用的标准系列很易于配制成与样品溶液在酸度、基体成分、总盐度等各种性质十分相似的溶液。同时,光源能量密度高,特殊的激发环境——通道效应和激发机理,使ICP光源具有基体效应小的突出优点。
??
??5)精密度高:RSD~0.5%
??
??6)曝光时间短:一般只需10-30秒
??
??7)原子发射光谱分析所具有的多元素同时分析的特点与其他分析方法逐个元素单独测定相比,无论从效率的经济,技术等方面都具有很大的特点。这也是ICP原子发射光谱分析取得很大进展的原因之一。
??
??2.2ICP光源的装置及其形成
??
??炬管的组成:三层石英同心管组成。冷却(等离子)氩气以外管内壁相切的方向进入ICP炬管内,有效地解决了石英管壁的冷却问题。防止其被高温的ICP烧熔。炬管置于高频线圈的正中,线圈的下端距中管的上端2-4mm,水冷的线圈连接到高频发生器的输出端。高频电能通过线圈耦合到炬管内电离的氩气中。当线圈上有高频电流通过时,则在线圈的轴线方向上产生一个强烈振荡的环形磁场如图所示。开始时,炬管中的原子氩并不导电,因而也不会形成放电。当点火器的高频火花放电在炬管内使小量氩气电离时,一旦在炬管内出现了导电的粒子,由于磁场的作用,其运动方向随磁场的频率而振荡,并形成与炬管同轴的环形电流。原子、离子、电子在强烈的振荡运动中互相碰撞产生更多的电子与离子。终于形成明亮的白色Ar-ICP放电,其外形尤如一滴刚形成的水滴。在高度电离的ICP内部所形成的环形涡流可看作只有一匝的变压器次级线圈,而水冷的工作线圈则相当于变压器的初级线圈,它们之间的耦合,使磁场的强度和方向随时间而变化,受磁场加速的电子和离子不断改变其运动方向,导致焦耳发热效应并附带产生电离作用。这种气体在极短时间内在石英的炬管内形成一个新型的稳定的“电火焰”光源。
??
??样品经雾化器被气动力吹散击碎成粒径为1-10um之间的细粒截氩气由中心管注入ICP中,雾滴在进入ICP之前,经雾化室除去大雾滴使到达ICP的气溶胶微滴快速地去溶、蒸发和原子化。
??
??2.3ICP光源的特性
??
??1)趋肤效应:高频电流在导体上传输时,由于导体的寄生分布电感的作用,使导线的电阻从中心向表面沿半径以指数的方式减少,因此高频电流的传导主要通过电阻较小的表面一层,这种现象称为趋肤效应。等离子体是电的良导体,它在高频磁场中所感应的环状涡流也主要分布在ICP的表层。从ICP的端部用肉眼即可观察到在白色圈环中有一亮度较暗的内核,俗称“炸面圈”结构。这种结构提供一个电学的屏蔽筒,当试样注入ICP的通道时不会影响它的电学参数,从而改善了ICP的稳定性。
??
??2)通道效应
??
??由于切线气流所形成的旋涡使轴心部分的气体压力较外周略低,因此携带样品气溶胶的载气可以极容易地从圆锥形的ICP底部钻出一条通道穿过整个ICP。通道的宽度约2mm,长约5cm。样品的雾滴在这个约7000K的高温环境中很快蒸发、离解、原子化、电离并激发。即通道可使这四个过程同时完成。由于样品在通过通道的时间可达几个毫秒,因此被分析物质的原子可反复地受激发,故ICP光源的激发效率较高。
??
??2.4ICP光源的气流
??
??ICP光源自问世以来主要是在氩气氛中工作的,三股气流所起的作用各不相同,它们分别是:
??
??1)冷却气:沿切线方向引入外管,它主要起冷却作用,保护石英炬管免被高温所熔化,使等离子体的外表面冷却并与管壁保持一定的距离。其流量约为10-20L/min,视功率的大小以及炬管的大小、质量与冷却效果而定,冷却气也称等离子气。
??
??2)辅助气:通入中心管与中层管之间,其流量在0-1.5L/mim,其作用是“点燃”等离子体,并使高温的ICP底部与中心管,中层管保持一定的距离,保护中心管和中层管的顶端,尤其是中心管口不被烧熔或过热,减少气溶胶所带的盐分过多地沉积在中心管口上。另外它又起到抬升ICP,改变等离子体观察度的作用。
??
??3)雾化气:也称载气或样品气,作用之一是作为动力在雾化器将样品的溶液转化为粒径只有1-10um的气溶胶,作用之二是作为载气将样品的气溶胶引入ICP,作用之三是对雾化器、雾化室、中心管起清洗作用。雾化气的流量一般在0.4-1.0L/min,或压力在15-45psi。